TRANSPORT
URBAN PLANNING
ECONOMICS
LABORATORY

La mobilité urbaine : quelles mesures pour répondre au défi environnemental ?

Charles RAUX
Lisbonne, 16 septembre 2019

Le contexte : les trois dimensions de la soutenabilité

- Environnementale
 - émissions de gaz à effet de serre (GES)
 - pollution locale, bruit...
- Sociale
 - assurer l'inclusion sociale et territoriale
- Économique et financière
 - assurer le fonctionnement de l'économie à coûts maîtrisés
 - rareté d'argent public, réduction de la pression fiscale

L'équation des émissions du transport

Emissions = émissions / énergie

Contenu en carbone de l'énergie

x (énergie / véhicule-km)

Consommation unitaire des véhicules

x (véhicule-km / passager-km)

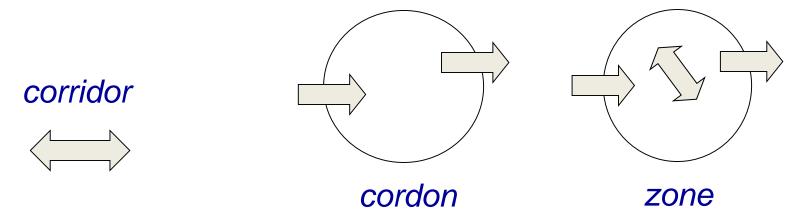
Taux d'occupation des véhicules

x (passager-km / PIB)

Intensité de mobilité

x (PIB / POP) x (POP)

Croissance économique et démographique


Agir sur les comportements

- Le temps
 - des TC plus rapides, plus fiables, « qualité de service »
 - voies réservées aux bus, tramways... ou au covoiturage, vélo
 - vitesses relatives : concurrence entre modes
 - laisser la congestion routière se développer... mais jusqu'où ?
- Le coût pour l'usager
 - « sous-tarification » de la voiture (en urbain)
 - subventionnement des TC
 - ne peut-on mieux faire ?

Les péages urbains

selon la configuration spatiale

- selon la base tarifaire
 - au km, passage, forfait
- selon l'heure du déplacement

un rêve d'économiste techniquement possible aujourd'hui

On sait faire, ça marche

- Singapour : 1975 puis 1998 (Electronic Road Pricing) péage multicordon + zone
- Norvège : péages de cordon, depuis les années 90 dans les 5 principales villes du pays
- Californie: Express Lanes, voies HOT (High Occupancy Toll lanes), péages de corridor
- Londres (2003), péage de zone + tarification environnementale additionnelle ULEZ (2019)
- Stockholm (2007), péage de cordon, Göteborg (2013)
- Milan (2008), péage de cordon
- ... ?

Qu'en est-il de l'équité ?

- pas de conclusion universelle (travaux empiriques)
- peut-être soit progressif, soit régressif
 - selon la configuration du péage (géographie, horaires, tarifs),
 - selon les lieux de résidence des différents groupes sociaux,
 selon leurs lieux d'emploi...
- l'affectation des recettes influe également sur les effets distributifs

Leçons des expériences

- Péage urbain efficace pour
 - modérer le trafic automobile, réduire la pollution
 - accélérer l'évolution du parc automobile (émissions),
 - générer des recettes pour offrir des alternatives à la voiture
- La question équité / inégalités peut être maîtrisée
- Applicabilité :
 - les problèmes de circulation (congestion, environnement) doivent être critiques
 - nécessité d'une volonté politique forte!

Variante : « droits à circuler échangeables »

- Allocation gratuite aux habitants de quotas de déplacements ou de kilomètres en automobile
- Consommation des droits en fonction du nombre de déplacements ou de km, de l'heure du déplacement, de l'émission du véhicule (norme Euro)
- Possibilité de revendre les droits inutilisés
- 3 avantages par rapport au péage urbain
 - garantie d'un objectif quantitatif (circulation ou pollution)
 - acceptabilité accrue
 - incitation supplémentaire du fait de la revente des droits

Alternative

Développer / subventionner les modes alternatifs à la voiture solo

Quelles alternatives à la voiture solo ?

- Etude du potentiel d'alternatives telles que les transports collectifs, le covoiturage ou le vélo + évolution technologique des véhicules (CO2)
- Territoires périurbain (« carré » Ouest Lyonnais)
 et urbain (« carré » Métropolitain Lyonnais)
- Objectif: Stratégie Nationale Bas Carbone (SNBC)
- Potentiel des TC faible sur le périurbain, plus élevé sur l'agglomération lyonnaise, mais coût très élevé et ne garantit pas objectif SNBC 2050
- objectif SNBC atteint si technologie et covoiturage + vélo

Le vélo

- Part des déplacements en vélo à Lyon < 2% (EMD 2015)
- Berlin 13%, Munich 14%, Amsterdam 22%, Copenhague 30%... Strasbourg 8%
- Vitesse du vélo classique comparable à la voiture en heure de pointe (porte à porte) à Lyon (centre agglo)
- Émergence du vélo à assistance électrique (VAE) :
 - vitesse 20 à 25 km/h, portée de plusieurs dizaines de km
 - hypothèse d'un usage raisonnable sur une portée de 10 km en 25 à 30 mn

Le covoiturage

- Taux moyen de remplissage des VP 1,08 actuellement pour le travail
- Quelles incitations?
 - essentiellement du temps (gain de temps ou fiabilité)
 - d'où l'intérêt de voies réservées au covoiturage

Conclusion

- Politiques volontaristes nécessaires
- Pas forcément très coûteuses en argent public
 - Vélo/VAE : infrastructures cyclables
 - Covoiturage : voies réservées (expérimentation Lyon 2020)
- Un sentier soutenable pour le système de mobilité urbaine

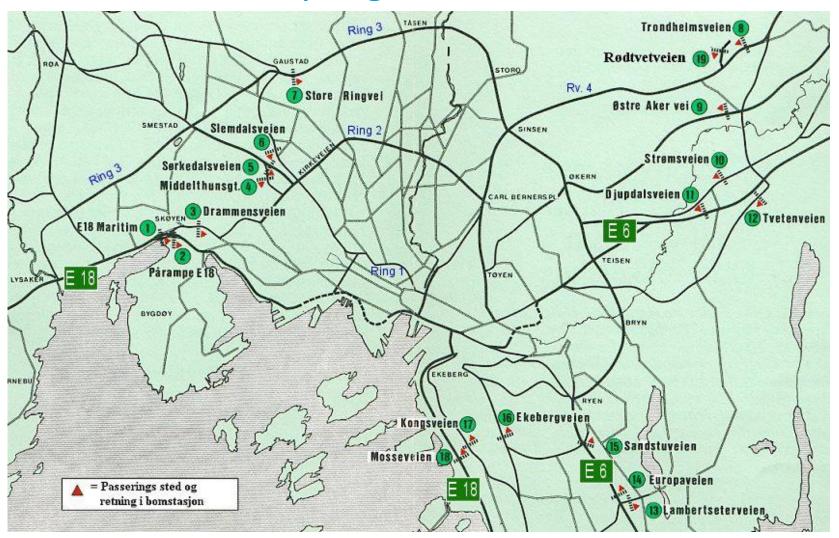
TRANSPORT
URBAN PLANNING
ECONOMICS
LABORATORY

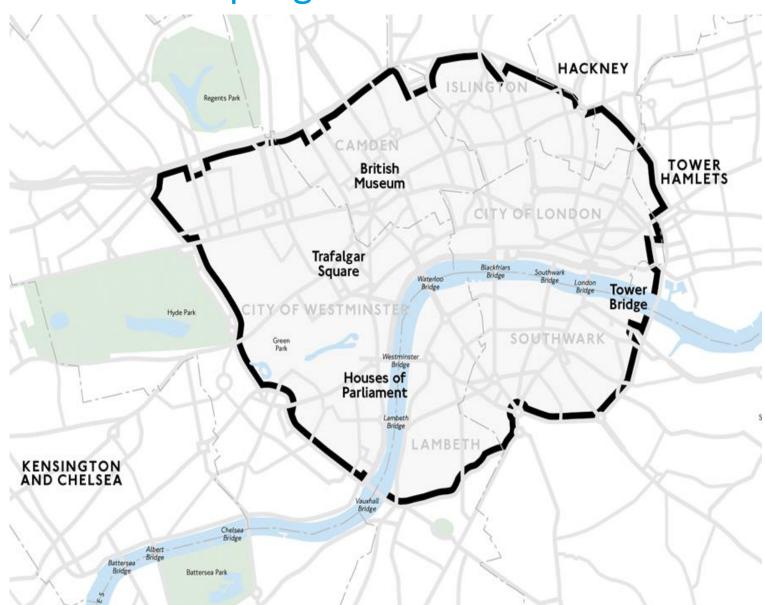
Merci!

Publications

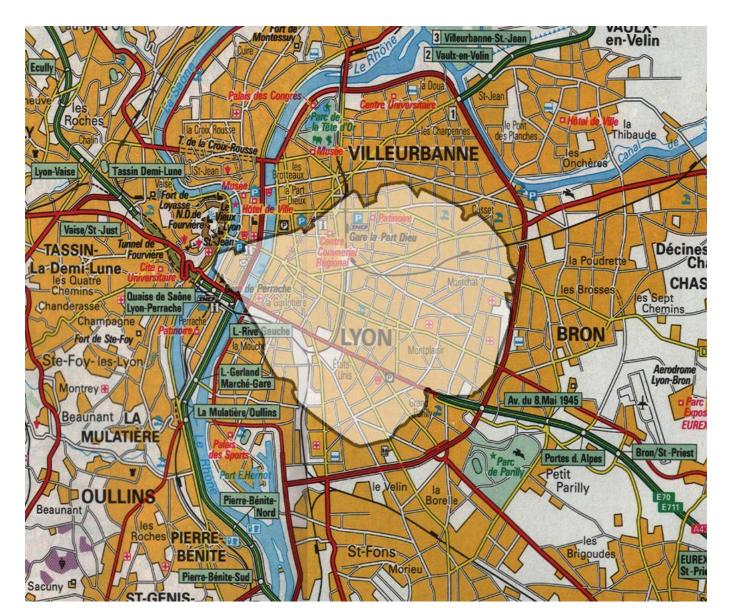
https://cv.archives-ouvertes.fr/charlesraux/

Charles RAUX Lisbonne, 16 septembre 2019

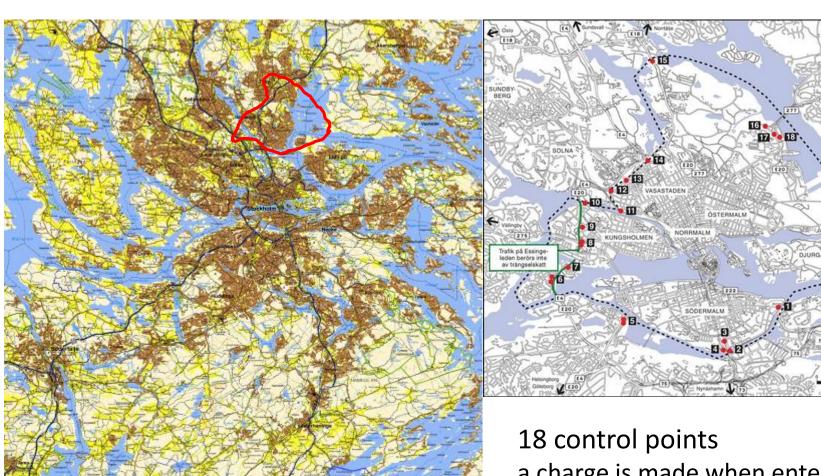




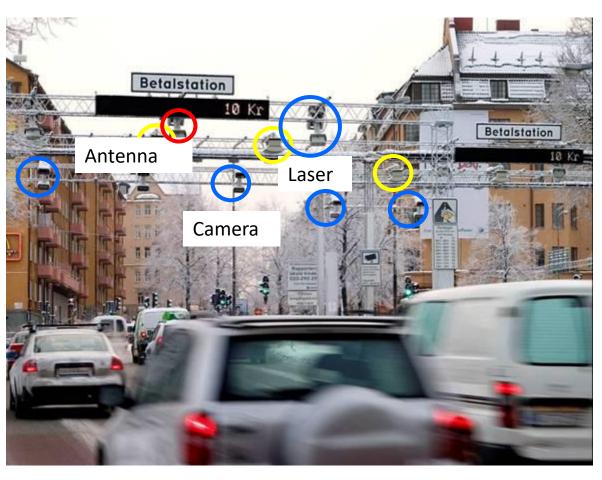
Le péage d'Oslo



Le péage de Londres



Le péage de Londres

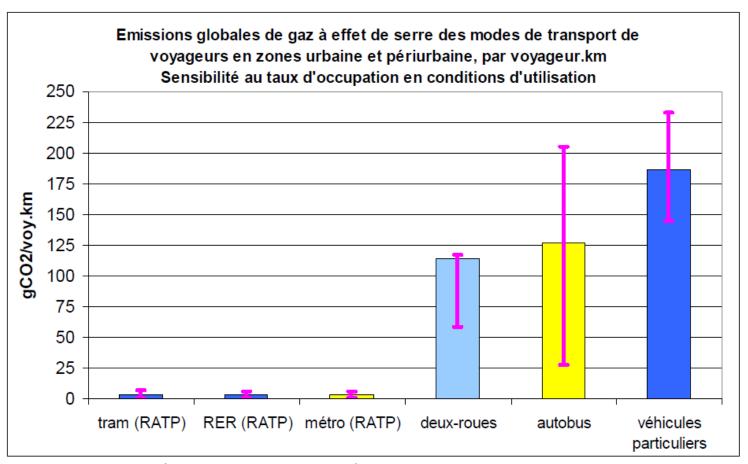

Le péage de Stockholm

18 control points a charge is made when entering/ exiting the centre of Stockholm

Le péage de Stockholm

- No barriers, no stops, no roadside payments
- Amount due for payment shown at the control point
- Automatic identification.
 License plates are photographed

Le vélo : quelles parts potentielles ?


Statistiques	km (vol d'oiseau)
min	1.3
C10	4.5
C25	9.6
median	22.9
mean	28.1
C75	39.6
C90	59.0
max	184.0

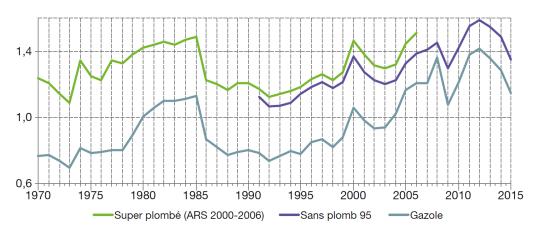
Statistiques	km (vol d'oiseau)
min	1.2
C10	3.8
C25	6.2
median	11.9
mean	16.7
C75	21.8
C90	35.1
max	157.4

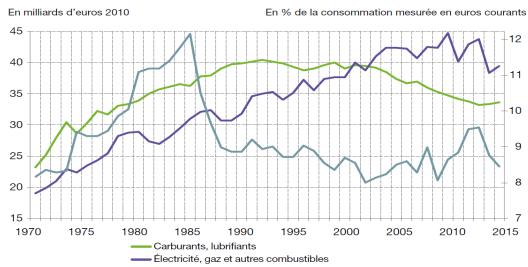
Portée des boucles domicile-travail dans le carré <u>ouest</u> lyonnais

Portée des boucles domicile-travail dans le carré <u>métropolitain</u> lyonnais

VK/PK : Efficacité des modes de transport

Graphe 3 : comparaison des émissions globales de GES des différents modes de transport de voyageurs en fonction du taux d'occupation


source : ADEME, 2008


Le contexte : toujours moins cher

PRIX AU LITRE DES CARBURANTS À LA POMPE (TTC)

En euros constants 2015

DÉPENSES D'ÉNERGIE DES MÉNAGES ET PART DE L'ÉNERGIE DANS LA CONSOMMATION

