

Energy Efficiency at local level

Estonian Thermal Power Engineers Association (ETPEA) Centro de Informação Urbana de Lisboa 9th September2013

> Miguel Águas Francisco Gonçalves www.lisboaenova.org

CONTENTS LISBOA E-NOVA ENERGY CONTEXT TECHNOLOGICAL PROJECTS URBAN PLANNING AND RES BEHAVIOURAL CHANGE

CONTENTS LISBOA E-NOVA ENERGY CONTEXT TECHNOLOGICAL PROJECTS URBAN PLANNING AND RES BEHAVIOURAL CHANGE

LISBOA E-NOVA

LISBON'S MUNICIPAL ENERGY AND ENVIRONMENTAL AGENCY

Non-profit organization operating under private Law, which seeks the sustainable development of the city of Lisbon

MISSION

- Energy demand management
- Energy efficiency
- Endogenous energy resources management
- Environmental management
- Best practices in Urban
 Planning and Construction
- Sustainable mobility

LISBOA E-NOVA AREAS OF EXPERTISE

Energy and Environmental Strategy	Energy Efficiency and Renewable Energy	Water	Sustainable Mobility	
Smart Cities	Urban Planning	Biodiversity	Environmental Awareness	
COMMUNICATION				

AFFILIATES

CONTENTS LISBOA E-NOVA ENERGY CONTEXT TECHNOLOGICAL PROJECTS URBAN PLANNING AND RES BEHAVIOURAL CHANGE

ENERGY CONTEXT WORLD

WORLD ENERGY CONSUMPTION

Source: BP- Statistical Review of World Energy 2011

ECONOMIC STRUCTURE

Sources: BP - Statistical Review of World Energy June 2009 (primary energy) and IMF , World Economic Outlook April 2009 (GDP/and population)

ECONOMIC STRUCTURE

CO₂

CO₂

www.energy.eu

ENERGY CONTEXT PORTUGAL

ELECTRICITY

ELECTRICITY

Source: REN (www.ren.pt)

ELECTRICITY

Wind energy production in 2012

Source: REN (www.ren.pt)

Natural gas is almost Methane (CH₄), depending on it's origin

Teor médio dos	Badajoz		Sines	
componentes (% molar)	2004	2005 (1°sem)	2004	2005 (1°sem)
Metano	85,271	88,258	92,009	92,301
Etano	9,318	7,829	4,872	4,869
Propano	1,815	1,317	2,190	2,064
i-Butano	0,161	0,101	0,365	0,327
n-Butano	0,238	0,146	0,455	0,348
i-Pentano	0,027	0,020	0,029	0,012
n-Pentano	0,024	0,016	0,005	0,002
C_6^+	0,020	0,019	0,000	0,000
N ₂	1,675	1,052	0,075	0,077
CO2	1,454	1,241	0,000	0,000

HHV (High Heat Value) is the main chemical property of NG.

It's value, in Portugal, depends of the location (due to IGN) and time along the year

$(MJ/m^{3}(n))$			
Ba	dajoz	S	ines
2004	2005 (1°sem)	2004	2005 _{(1*20}
42,98	42,41	43,40	43,17
		[15ºC: (0ºC:)	1.01325 baría

Valores médios do PCS

NATURAL GAS INTERFACE NGI is the interface between NG from Sines and NG from Argelia. It's location is usually in the zone Lisboa-Leiria

The strates of	
Co	ml
Di	rec
Di:	str
ASSIS	
5 mg	
C327	
ARTED	
Can and Sa.	

NATIONAL CONSUMPTION			
(FORECAST 2011/12) (GWh/y)			
Combined cycles 27.462 40%			
Direct clients 15.445 23%			
Distributors 25.446 37%			
TOTAL 68.353			

	Lusitaniagás	8.610	34%
	Portgás	6.782	27%
•	Lisboagás	6.308	25%
	Setgás	1.952	8%
	Others	1.794	7%

Source: ERSE (www.erse.pt)

ENERGY CONTEXT LISBON

NUTS II - LISBON

POPULATION

Reduction of population in favor of the Region of Lisbon (NUTS II)

ECONOMY

Lisbon concentrates the economy activity

ANNUAL SALES

(Non-financial activities)

2009	% of
(M€)	National
84.415	25%
160.301	48%
335.887	100%
	2009 (M€) 84.415 160.301 335.887

Source: www.pordata.pt

GDP2009/cap in PPP (EU27 = 100)

GDP

	2009 (M€/y)	% of National
Regional	61.486	270/
National	168.046	31%

Source: AICEP (www.portugalglobal.pt)

ENERGY CONSUMPTION

Electricity

National final consumption of 49 TWh/y Lisbon City represents ~ 7%

Gasoline and gasoil

National final consumption of 6 M ton/y (71 TWh/y) Lisbon City represents ~ 5%

Natural gas

National final consumption of 3,4 bcm/y (41 TWh/y) Lisbon City represents ~ 8%

CONTENTS LISBOA E-NOVA ENERGY CONTEXT TECHNOLOGICAL PROJECTS URBAN PLANNING AND RES BEHAVIOURAL CHANGE

BACKGROUND

LED IN TRAFFIC LIGHTS

- Replacement of 4000 bulbs for LED in the last 3 years (15%)
- Reduction of 1300 MWh in energy consumption
- Less 48 ton CO₂/year
- Less130.000 Euros/year in the energy bill of the Municipality

EPC IN TRAFFIC LIGHTS

- Replacement of 22500 bulbs for LED during 2013
- Reduction of 6,2 GWh in energy consumption/year
- Less 230 ton CO₂/year
- Less 700 k Euros/year in the energy bill of the Municipality

EPC IN TRAFFIC LIGHTS

EPC IN TRAFFIC LIGHTS

EPC IN TRAFFIC LIGHTS: SAVINGS POTENTIAL

33

EPC IN TRAFFIC LIGHTS: SAVINGS POTENTIAL

PUBLIC LIGHTING

3 levels of action:

PPEC – Energy Efficiency Promotion Plan (NRA)

 Equipping existing 250 W (HP Sodiumvapor lamps) luminaires with electronic ballasts (light flux reduction and less energy consumption) and remotemanagement.

- Historical buildings efficient lighting
- Energy consumption reduction791 MWh.

PUBLIC LIGHTING

EPC in Public Lighting

Preparing an entire District for more efficient lighting under na EPC procedure

LED piloting

Piloting LED technology in several streets of Lisbon

CONTENTS LISBOA E-NOVA ENERGY CONTEXT TECHNOLOGICAL PROJECTS URBAN PLANNING AND RES BEHAVIOURAL CHANGE

Defined goals to accomplish between 2009-2013 (political mandate) in the sectors: energy; water and materials

COVENANT OF MAYORS

Lisbon undersigned this Document in 2009 and Lisboa E-Nova was responsible for the definition of Lisbon's methodology for the Sustainable Energy Action Plan, and is currently monitoring it.

LISBON'S SOLAR POTENTIAL CHART

www.lisboaenova.org/cartasolarlisboa

LISBON'S SOLAR POTENTIAL CHART

LISBON'S SOLAR POTENTIAL CHART

Solar Thermal in Major Renovations and Protected Urban Areas

Intents to promote the adoption of solar thermal systems in multi-family buildings and classified areas.

Lisbon will share it's experience regarding the adoption of solar thermal in classified areas and focus on the promotion of collective solar thermal systems in multi-familiar buildings requalification's.

Co-funded by the Intelligent Energy Europe Programme of the European Union

URBANSOL PLUS UrbanSol+

- 1. Building identification
- 2. Solar potential
- Existing DHW systems
- 4. Common areas and space availability
- 5. Results technical and economical analysis

Co-funded by the Intelligent Energy Europe Programme of the European Union

MOBI-E: ELECTRIC MOBILITY IN LISBON

Project coordination of the location of 514 slow charging points for electric cars in the city of Lisbon.

During 2012 will be installed:

- 30 slow charging points for electric motorcycles/ bicycles
- 9 fast charging points

CONTENTS LISBOA E-NOVA ENERGY CONTEXT TECHNOLOGICAL PROJECTS URBAN PLANNING AND RES BEHAVIOURAL CHANGE

LISBOA E-NOVA DEVELOPPED DIFERENT ENERGY

- For residential or companies consumers
- Diferent investment in metering

	No investment	With investment
Dwellings	Competition	Smartmeter
Service buildings	Remote Manager Tool	Online electrical Disaggregation

LISBOA E-NOVA DEVELOPPED DIFERENT ENERGY

- For residential or companies consumers
- Diferent investment in metering

	No investment	With investment
Dwellings	Competition	Smartmeter
Service buildings	Remote Manager Tool	Online electrical Disaggregation

In Municipal buildings and buildings from Lisboa E-Nova Affiliates, Lisboa E-Nova offers the remote manager tool.

Goal: to present energy efficient solutions based on:

- Uses the telemetry system installed by the DSO (<u>near real time data</u>)
- Team work: (Lisboa E-Nova) + (Maintenance and Costs control departments)
- 1 in each 37 kWh consumed in medium (or high) voltage in Lisbon is already analyzed by Lisboa E-Nova.
- For the current pipeline, real/potential savings with low pay-back is up to 15%

Arquivo	Consumo (kWh/ano)	Factura c/IVA(€/ano)
Mai-10 a Abr-11	1.023.664	108.010
Mai-12 a Abr-13	287.746	56.104
Poupagea	-735.918	-80.951
Foupaliça	-72%	-75%

A poupança na factura foi calculada considerando o preçoactual só da componente de energia (0,11 €/kWh)

CASE STUDY 3: - 150 000 kWh/ano Savings: 12%

DWELLINGS – RESIDENTIAL BUILDINGS

Energy efficiency based in smart metering and feedback mechanisms (user empowerment through information and behaviour change)

Promote energy efficiency and behaviour change through the use of smart meters and practical accompaniment towards the adoption of more energy efficient actions and empowered and skilled households to manage and save energy

Annual savings: 0,4 – 0,8 GWh/y Total investment: 250.000 €

DWELLINGS – RESIDENTIAL BUILDINGS

Empowered consumer

• ICT

- Information (Informative billing)
- Continuous motivation
- **Results** (Energy savings and decreasing energy costs)

USERS' CONSUMPTION RANGE

Grupo	Consumo mensal	Número de	Consumo médio
	(kWh/mês)	Participantes	(kWh/mês)
1	Menor que 200	35	155
2	De 200 a 300	40	243
3	De 300 a 450	49	407
4	De 450 a 900	39	622
5	Mais de 900	3	1587
	Sub-Total	166	386
	Não disponivel	84	
	Total	250	

USERS' CONSUMPTION RANGE

PERSONAL FEEDBACK GIVEN

- Facebook group for knowledge and experience sharing;
- Monthly workshops with users;
- Permanent and individual technical support;
- COOPETITION;
- Monthly graphical reports.

Behavioural sheet of the participant with best performance in Group 2

ERSE

..

-

-SUIT CH

8 m

5

100

Manor pouplance

Grupo 2: 200-300 kWih/mile Grupo 2: 300-450 kWih/mile

Grupo & 450 Whitele ou mais

Grupos - critérios: Grupo 1: até 200 kWt/méa

Behavioural sheet of the participant with best performance in Group 3

CONSUMPTION PROFILE: Best practice case

SOME RESULTS:

- Minimal power:
 - Individually, 41% of the total consumption;
 - Consumption groups, 66% of the total consumption;
- Average power between 0h-7h is 85% of the average power between 7h-24h
- Average consumption ~ 400 kWh or ~ 70 €

ACTIONS – BEHAVIOURAL CHANGE

- Standby reduction
 - Turning off modems, boxes, etc.
 - Use of stand-by killers
- Smart plug programming
- Temperature control
 - Heating system
 - Water heater
- Contracted power reduction
- Lighting technology changing

THANK YOU!

Lisboa E-Nova Agência Municipal de Energia – Ambiente Rua dos Fanqueiros, 38 1º, P - 1100-231 Lisboa

> Tel. +351 218 847 010 Fax. +351 218 847 029

Miguel Águas miguelaguas @lisboaenova.org

Francisco Gonçalves franciscogoncalves@lisboaenova.org

> info@lisboaenova.org www.lisboaenova.org